Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 90
1.
Cell Rep ; 43(4): 114052, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38573860

Skeletal muscles exert remarkable regenerative or adaptive capacities in response to injuries or mechanical loads. However, the cellular networks underlying muscle adaptation are poorly understood compared to those underlying muscle regeneration. We employed single-cell RNA sequencing to investigate the gene expression patterns and cellular networks activated in overloaded muscles and compared these results with those observed in regenerating muscles. The cellular composition of the 4-day overloaded muscle, when macrophage infiltration peaked, closely resembled that of the 10-day regenerating muscle. In addition to the mesenchymal progenitor-muscle satellite cell (MuSC) axis, interactome analyses or targeted depletion experiments revealed communications between mesenchymal progenitors-macrophages and macrophages-MuSCs. Furthermore, granulin, a macrophage-derived factor, inhibited MuSC differentiation, and Granulin-knockout mice exhibited blunted muscle hypertrophy due to the premature differentiation of overloaded MuSCs. These findings reveal the critical role of granulin through the relayed communications of mesenchymal progenitors, macrophages, and MuSCs in facilitating efficient muscle hypertrophy.


Cell Differentiation , Hypertrophy , Macrophages , Mesenchymal Stem Cells , Mice, Knockout , Satellite Cells, Skeletal Muscle , Animals , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/pathology , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Granulins , Cell Communication , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Male , Regeneration
2.
Cells ; 12(17)2023 08 25.
Article En | MEDLINE | ID: mdl-37681879

It is widely accepted that cell fate determination in the cochlea is tightly controlled by different transcription factors (TFs) that remain to be fully defined. Here, we show that Sox9, initially expressed in the entire sensory epithelium of the cochlea, progressively disappears from differentiating hair cells (HCs) and is finally restricted to supporting cells (SCs). By performing ex vivo electroporation of E13.5-E14.5 cochleae, we demonstrate that maintenance of Sox9 expression in the progenitors committed to HC fate blocks their differentiation, even if co-expressed with Atoh1, a transcription factor necessary and sufficient to form HC. Sox9 inhibits Atoh1 transcriptional activity by upregulating Hey1 and HeyL antagonists, and genetic ablation of these genes induces extra HCs along the cochlea. Although Sox9 suppression from sensory progenitors ex vivo leads to a modest increase in the number of HCs, it is not sufficient in vivo to induce supernumerary HC production in an inducible Sox9 knockout model. Taken together, these data show that Sox9 is downregulated from nascent HCs to allow the unfolding of their differentiation program. This may be critical for future strategies to promote fully mature HC formation in regeneration approaches.


Cochlea , Hair Cells, Auditory , Epithelium , Cell Differentiation , Electroporation
4.
Stem Cells ; 41(6): 552-559, 2023 06 15.
Article En | MEDLINE | ID: mdl-36943314

Skeletal muscle is mainly composed of multinucleated cells called myofibers and has excellent regenerative and adaptive abilities. These abilities are granted by muscle satellite cells (MuSCs), which are anatomically defined cells located between myofibers and basal lamina. In addition to myofibers and MuSCs, skeletal muscle contains several types of cells located in interstitial areas, such as mesenchymal progenitors. These cells are positive for platelet-derived growth factor receptor alpha and are called fibro/adipogenic progenitors (FAPs) or mesenchymal stromal cells. Although mesenchymal progenitors were originally identified as the causative cells of ectopic fat accumulation in skeletal muscles, recent studies have shed light on their beneficial roles in homeostasis, regeneration, and hypertrophy. Furthermore, the heterogeneity of mesenchymal progenitors is of great interest in understanding skeletal muscle development, homeostasis, regeneration, aging, and diseases. In this concise review, we summarize recent findings on the physiological roles of mesenchymal progenitors and their heterogeneity and discuss the remaining critical concerns.


Adipogenesis , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Muscle, Skeletal/metabolism , Hypertrophy/metabolism , Homeostasis , Cell Differentiation/physiology
5.
Methods Mol Biol ; 2640: 3-11, 2023.
Article En | MEDLINE | ID: mdl-36995583

Fluorescence-activated cell sorting (FACS) is a powerful and requisite tool for the analysis and purification of adult stem cells. However, it is difficult to separate adult stem cells from solid organs than from immune-related tissues/organs. This is because of the presence of large amounts of debris, which increases noise in the FACS profiles. In particular, it is extremely difficult for unfamiliar researchers to identify muscle stem cell (also known as muscle satellite cell: MuSC) fraction because all myofibers, which are mainly composed of skeletal muscle tissues, become debris during cell preparation. This chapter describes our FACS protocol, which we have used for more than a decade, to identify and purify MuSCs.


Satellite Cells, Skeletal Muscle , Mice , Animals , Flow Cytometry/methods , Cell Separation/methods , Muscle, Skeletal , Staining and Labeling
6.
STAR Protoc ; 3(3): 101593, 2022 09 16.
Article En | MEDLINE | ID: mdl-35942341

We recently demonstrated that mesenchymal progenitors play a critical role in regulating satellite cell-dependent myonuclear accretion during overload-induced muscle hypertrophy. Here, we describe the detailed protocol for whole-mount immunofluorescence staining of mesenchymal progenitors in mouse plantaris muscle. Z-stack image reconstruction provides a whole-cell image and enables examination of YAP nuclear translocation in mesenchymal progenitors induced by overload. For complete details on the use and execution of this protocol, please refer to Kaneshige et al. (2022a).


Satellite Cells, Skeletal Muscle , Animals , Fluorescent Antibody Technique , Mice , Muscle, Skeletal/physiology , Satellite Cells, Skeletal Muscle/physiology , Staining and Labeling
7.
Skelet Muscle ; 12(1): 17, 2022 07 06.
Article En | MEDLINE | ID: mdl-35794679

Skeletal muscle homeostasis and function are ensured by orchestrated cellular interactions among several types of cells. A noticeable aspect of skeletal muscle biology is the drastic cell-cell communication changes that occur in multiple scenarios. The process of recovering from an injury, which is known as regeneration, has been relatively well investigated. However, the cellular interplay that occurs in response to mechanical loading, such as during resistance training, is poorly understood compared to regeneration. During muscle regeneration, muscle satellite cells (MuSCs) rebuild multinuclear myofibers through a stepwise process of proliferation, differentiation, fusion, and maturation, whereas during mechanical loading-dependent muscle hypertrophy, MuSCs do not undergo such stepwise processes (except in rare injuries) because the nuclei of MuSCs become directly incorporated into the mature myonuclei. In this review, six specific examples of such differences in MuSC dynamics between regeneration and hypertrophy processes are discussed.


Muscle, Skeletal , Myoblasts , Cell Differentiation , Humans , Hypertrophy/metabolism , Muscle, Skeletal/metabolism , Regeneration
8.
STAR Protoc ; 3(2): 101307, 2022 06 17.
Article En | MEDLINE | ID: mdl-35463471

Muscle satellite cells (MuSCs) supply nuclei to existing myofibers in response to mechanical loading. This myonuclear accretion is critical for efficient muscle hypertrophy. Herein, we present protocols for the detection of MuSC-derived new myonuclei in loaded mouse muscle, including procedures for EdU injection to stain myonuclei, followed by surgery and skeletal muscle fixation. We then describe immunostaining for EdU+ myonuclei and image acquisition for quantitative analyses. For complete details on the use and execution of this protocol, please refer to Kaneshige et al. (2022).


Satellite Cells, Skeletal Muscle , Animals , Cell Nucleus , Mice , Muscle, Skeletal
9.
iScience ; 25(3): 103928, 2022 Mar 18.
Article En | MEDLINE | ID: mdl-35243267

DNA methylation is an essential form of epigenetic regulation responsible for cellular identity. In muscle stem cells, termed satellite cells, DNA methylation patterns are tightly regulated during differentiation. However, it is unclear how these DNA methylation patterns affect the function of satellite cells. We demonstrate that a key epigenetic regulator, ubiquitin like with PHD and RING finger domains 1 (Uhrf1), is activated in proliferating myogenic cells but not expressed in quiescent satellite cells or differentiated myogenic cells in mice. Ablation of Uhrf1 in mouse satellite cells impairs their proliferation and differentiation, leading to failed muscle regeneration. Uhrf1-deficient myogenic cells exhibited aberrant upregulation of transcripts, including Sox9, with the reduction of DNA methylation level of their promoter and enhancer region. These findings show that Uhrf1 is a critical epigenetic regulator of proliferation and differentiation in satellite cells, by controlling cell-type-specific gene expression via maintenance of DNA methylation.

10.
Am J Physiol Cell Physiol ; 322(2): C275-C282, 2022 02 01.
Article En | MEDLINE | ID: mdl-35020502

Angiogenesis and muscle satellite cell (SC)-mediated myonuclear accretion are considered essential for the robust response of contraction-induced muscle hypertrophy. Moreover, both myonucleus and SCs are physically adjacent to capillaries and are the major sites for the expression of proangiogenic factors, such as VEGF, in the skeletal muscle. Thus, events involving the addition of new myonuclei via activation of SCs may play an important role in angiogenesis during muscle hypertrophy. However, the relevance among myonuclei number, capillary supply, and angiogenesis factor is not demonstrated. The Notch effector HeyL is specifically expressed in SCs in the skeletal muscle and is crucial for SC proliferation by inhibiting MyoD in overload-induced muscle hypertrophy. Here, we tested whether the addition of new myonuclei by SC in overloaded muscle is associated with angiogenic adaptation by reanalyzing skeletal muscle from HeyL-knockout (KO) mice, which show blunted responses of SC proliferation, myonucleus addition, and overload-induced muscle hypertrophy. Reanalysis confirmed blunted SC proliferation and myonuclear accretion in the plantaris muscle of HeyL-KO mice 9 wk after synergist ablation. Interestingly, the increase in capillary-to-fiber ratio observed in wild-type (WT) mice was impaired in HeyL-KO mice. In both WT and HeyL-KO mice, the expression of VEGFA and VEGFB was similarly increased in response to overload. In addition, the expression pattern of TSP-1, a negative regulator of angiogenesis, was also not changed between WT and HeyL-KO mice. Collectively, these results suggest that SCs activation-myonuclear accretion plays a crucial role in angiogenesis during overload-induced muscle hypertrophy via independent of angiogenesis regulators.


Basic Helix-Loop-Helix Transcription Factors/deficiency , Capillaries/metabolism , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Neovascularization, Physiologic , Satellite Cells, Skeletal Muscle/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Genotype , Hypertrophy , Mice, Knockout , Muscle Contraction , Muscle, Skeletal/pathology , Phenotype , Satellite Cells, Skeletal Muscle/pathology , Signal Transduction
11.
Nihon Yakurigaku Zasshi ; 157(1): 23-25, 2022.
Article Ja | MEDLINE | ID: mdl-34980805

Skeletal muscle is the largest organ in our body, consisting of bundles of multinuclear cells called myofibers. Skeletal muscle is responsible for locomotion, metabolism, and life activities such as swallowing and respiration, and is also attracting attention as an endocrine organ. Skeletal muscle has two abilities, regeneration and adaptation, and the understanding of these mechanisms is expected to contribute to the development of therapies for muscle diseases such as muscular dystrophies and muscle atrophy. Skeletal muscle-specific stem cells, muscle satellite cells (MuSCs), are involved in these abilities. As well as other tissue stem cells, MuSCs are also maintained in a dormant state under steady-state conditions. However, when myofibers are damaged, they start to proliferate and eventually rebuilt new myofibers. While, muscle hypertrophy is one of the "adaptation", and MuSCs contribute to muscle hypertrophy by supplying new nuclei to myofibers. In contrast to studies of MuSCs during regeneration, the dynamics of MuSCs during hypertrophy had not been well studied. One reason is that the specific regulatory mechanisms of MuSC in hypertrophic muscle had not been elucidated. In addition to physical stimuli, drugs such as dopings, hormones, and myostatin inhibition are known to induce muscle hypertrophy. The necessity of MuSCs and new myonuclei in various model of muscle hypertrophy has been highly debated. In this review, we introduce the mechanism of MuSC proliferation specific to hypertrophic muscle, and outline the mechanism of muscle hypertrophy induced by exercise and drugs and the involvement of MuSCs.


Muscle, Skeletal , Pharmaceutical Preparations , Humans , Hypertrophy , Regeneration , Stem Cells
12.
Cell Stem Cell ; 29(2): 265-280.e6, 2022 02 03.
Article En | MEDLINE | ID: mdl-34856120

Adaptation to mechanical load, leading to enhanced force and power output, is a characteristic feature of skeletal muscle. Formation of new myonuclei required for efficient muscle hypertrophy relies on prior activation and proliferation of muscle stem cells (MuSCs). However, the mechanisms controlling MuSC expansion under conditions of increased load are not fully understood. Here we demonstrate that interstitial mesenchymal progenitors respond to mechanical load and stimulate MuSC proliferation in a surgical mouse model of increased muscle load. Mechanistically, transcriptional activation of Yes-associated protein 1 (Yap1)/transcriptional coactivator with PDZ-binding motif (Taz) in mesenchymal progenitors results in local production of thrombospondin-1 (Thbs1), which, in turn, drives MuSC proliferation through CD47 signaling. Under homeostatic conditions, however, CD47 signaling is insufficient to promote MuSC proliferation and instead depends on prior downregulation of the Calcitonin receptor. Our results suggest that relayed signaling between mesenchymal progenitors and MuSCs through a Yap1/Taz-Thbs1-CD47 pathway is critical to establish the supply of MuSCs during muscle hypertrophy.


CD47 Antigen , Myoblasts , Animals , CD47 Antigen/metabolism , Hypertrophy/metabolism , Mice , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Stem Cells/metabolism
13.
Exp Cell Res ; 409(2): 112907, 2021 12 15.
Article En | MEDLINE | ID: mdl-34793776

Skeletal muscles are composed of multinuclear cells called myofibers and have unique abilities, one of which is plasticity. In response to the mechanical load induced by physical activity, skeletal muscle exerts several local adaptations, including an increase in myofiber size and myonuclear number, known as muscle hypertrophy. Protein synthesis and muscle satellite cells (MuSCs) are mainly responsible for these adaptations. However, the upstream signaling pathways that promote protein synthesis remain controversial. Further, the necessity of MuSCs in muscle hypertrophy is also a highly debated issue. In this review, we summarized the insulin-like growth factor 1 (IGF-1)/Akt-independent activation of mammalian target of rapamycin (mTOR) signaling in muscle hypertrophy and the involvement of mTOR signaling in age-related loss of skeletal muscle function and mass and in sarcopenia. The roles and behaviors of MuSCs, characteristics of new myonuclei in muscle hypertrophy, and their relevance to sarcopenia have also been updated in this review.


Hypertrophy/pathology , Muscular Diseases/pathology , Satellite Cells, Skeletal Muscle/pathology , TOR Serine-Threonine Kinases/metabolism , Animals , Humans , Hypertrophy/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Muscular Diseases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/genetics
14.
Endocrinol Metab (Seoul) ; 36(4): 737-744, 2021 08.
Article En | MEDLINE | ID: mdl-34372625

Skeletal muscle has attracted attention as endocrine organ, because exercise-dependent cytokines called myokines/exerkines are released from skeletal muscle and are involved in systemic functions. While, local mechanical loading to skeletal muscle by exercise or resistance training alters myofiber type and size and myonuclear number. Skeletal muscle-resident stem cells, known as muscle satellite cells (MuSCs), are responsible for the increased number of myonuclei. Under steady conditions, MuSCs are maintained in a mitotically quiescent state but exit from that state and start to proliferate in response to high physical activity. Alterations in MuSC behavior occur when myofibers are damaged, but the lethal damage to myofibers does not seem to evoke mechanical loading-dependent MuSC activation and proliferation. Given that MuSCs proliferate without damage, it is unclear how the different behaviors of MuSCs are controlled by different physical activities. Recent studies demonstrated that myonuclear number reflects the size of myofibers; hence, it is crucial to know the properties of MuSCs and the mechanism of myonuclear accretion by MuSCs. In addition, the elucidation of mechanical load-dependent changes in muscle resident cells, including MuSCs, will be necessary for the discovery of new myokines/exerkines and understating skeletal muscle diseases.


Resistance Training , Humans , Muscle, Skeletal , Stem Cells
15.
iScience ; 24(4): 102303, 2021 Apr 23.
Article En | MEDLINE | ID: mdl-33870126

Androgens have a robust effect on skeletal muscles to increase muscle mass and strength. The molecular mechanism of androgen/androgen receptor (AR) action on muscle strength is still not well known, especially for the regulation of sarcomeric genes. In this study, we generated androgen-induced hypertrophic model mice, myofiber-specific androgen receptor knockout (cARKO) mice supplemented with dihydrotestosterone (DHT). DHT treatment increased grip strength in control mice but not in cARKO mice. Transcriptome analysis by RNA-seq, using skeletal muscles obtained from control and cARKO mice treated with or without DHT, identified a fast-type muscle-specific novel splicing variant of Myosin light-chain kinase 4 (Mylk4) as a target of AR in skeletal muscles. Mylk4 knockout mice exhibited decreased maximum isometric torque of plantar flexion and passive stiffness of myofibers due to reduced phosphorylation of Myomesin 1 protein. This study suggests that androgen-induced skeletal muscle strength is mediated with Mylk4 and Myomesin 1 axis.

16.
J Clin Invest ; 131(1)2021 01 04.
Article En | MEDLINE | ID: mdl-33170806

Age-related sarcopenia constitutes an important health problem associated with adverse outcomes. Sarcopenia is closely associated with fat infiltration in muscle, which is attributable to interstitial mesenchymal progenitors. Mesenchymal progenitors are nonmyogenic in nature but are required for homeostatic muscle maintenance. However, the underlying mechanism of mesenchymal progenitor-dependent muscle maintenance is not clear, nor is the precise role of mesenchymal progenitors in sarcopenia. Here, we show that mice genetically engineered to specifically deplete mesenchymal progenitors exhibited phenotypes markedly similar to sarcopenia, including muscle weakness, myofiber atrophy, alterations of fiber types, and denervation at neuromuscular junctions. Through searching for genes responsible for mesenchymal progenitor-dependent muscle maintenance, we found that Bmp3b is specifically expressed in mesenchymal progenitors, whereas its expression level is significantly decreased during aging or adipogenic differentiation. The functional importance of BMP3B in maintaining myofiber mass as well as muscle-nerve interaction was demonstrated using knockout mice and cultured cells treated with BMP3B. Furthermore, the administration of recombinant BMP3B in aged mice reversed their sarcopenic phenotypes. These results reveal previously unrecognized mechanisms by which the mesenchymal progenitors ensure muscle integrity and suggest that age-related changes in mesenchymal progenitors have a considerable impact on the development of sarcopenia.


Aging/metabolism , Gene Expression Regulation , Growth Differentiation Factor 10/biosynthesis , Mesenchymal Stem Cells/metabolism , Muscle, Skeletal/metabolism , Sarcopenia/metabolism , Adult , Aging/genetics , Aging/pathology , Animals , Female , Growth Differentiation Factor 10/genetics , Humans , Male , Mesenchymal Stem Cells/pathology , Mice , Mice, Knockout , Middle Aged , Muscle, Skeletal/pathology , Sarcopenia/genetics , Sarcopenia/pathology
17.
Stem Cells ; 39(3): 306-317, 2021 03.
Article En | MEDLINE | ID: mdl-33295098

Muscle stem cells, also called muscle satellite cells (MuSCs), are responsible for skeletal muscle regeneration and are sustained in an undifferentiated and quiescent state under steady conditions. The calcitonin receptor (CalcR)-protein kinase A (PKA)-Yes-associated protein 1 (Yap1) axis is one pathway that maintains quiescence in MuSCs. Although CalcR signaling in MuSCs has been identified, the critical CalcR signaling targets are incompletely understood. Here, we show the relevance between the ectopic expression of delta-like non-canonical Notch ligand 1 (Dlk1) and the impaired quiescent state in CalcR-conditional knockout (cKO) MuSCs. Dlk1 expression was rarely detected in both quiescent and proliferating MuSCs in control mice, whereas Dlk1 expression was remarkably increased in CalcR-cKO MuSCs at both the mRNA and protein levels. It is noteworthy that all Ki67+ non-quiescent CalcR-cKO MuSCs express Dlk1, and non-quiescent CalcR-cKO MuSCs are enriched in the Dlk1+ fraction by cell sorting. Using mutant mice, we demonstrated that PKA-activation or Yap1-depletion suppressed Dlk1 expression in CalcR-cKO MuSCs, which suggests that the CalcR-PKA-Yap1 axis inhibits the expression of Dlk1 in quiescent MuSCs. Moreover, the loss of Dlk1 rescued the quiescent state in CalcR-cKO MuSCs, which indicates that the ectopic expression of Dlk1 disturbs quiescence in CalcR-cKO. Collectively, our results suggest that ectopically expressed Dlk1 is responsible for the impaired quiescence in CalcR-cKO MuSCs.


Calcium-Binding Proteins/metabolism , Muscle, Skeletal/metabolism , Receptors, Calcitonin/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Animals , Cell Differentiation/physiology , Cell Division/physiology , Cell Proliferation/physiology , Mice, Inbred C57BL , Mice, Transgenic , Stem Cells/metabolism
18.
Biochem Biophys Res Commun ; 534: 79-85, 2021 01 01.
Article En | MEDLINE | ID: mdl-33310192

Epigenetic transcriptional regulation is essential for the differentiation of various types of cells, including skeletal muscle cells. DNA methyltransferase 1 (Dnmt1) is responsible for maintenance of DNA methylation patterns via cell division. Here, we investigated the relationship between Dnmt1 and skeletal muscle regeneration. We found that Dnmt1 is upregulated in muscles during regeneration. To assess the role of Dnmt1 in satellite cells during regeneration, we performed conditional knockout (cKO) of Dnmt1 specifically in skeletal muscle satellite cells using Pax7CreERT2 mice and Dnmt1 flox mice. Muscle weight and the cross-sectional area after injury were significantly lower in Dnmt1 cKO mice than in control mice. RNA sequencing analysis revealed upregulation of genes involved in cell adhesion and apoptosis in satellite cells from cKO mice. Moreover, satellite cells cultured from cKO mice exhibited a reduced number of cells. These results suggest that Dnmt1 is an essential factor for muscle regeneration and is involved in positive regulation of satellite cell number.


DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Muscle, Skeletal/physiology , Regeneration/physiology , Satellite Cells, Skeletal Muscle/physiology , Animals , Cells, Cultured , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Gene Expression Regulation , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/injuries , PAX7 Transcription Factor/genetics , Satellite Cells, Skeletal Muscle/cytology
20.
Front Cell Dev Biol ; 8: 267, 2020.
Article En | MEDLINE | ID: mdl-32391357

Adult skeletal muscle has a remarkable ability to regenerate. Regeneration of mature muscle fibers is dependent on muscle stem cells called satellite cells. Although they are normally in a quiescent state, satellite cells are rapidly activated after injury, and subsequently proliferate and differentiate to make new muscle fibers. Myogenesis is a highly orchestrated biological process and has been extensively studied, and therefore many parameters that can precisely evaluate regenerating events have been established. However, in some cases, it is necessary to evaluate the completion of regeneration rather than ongoing regeneration. In this study, we establish methods for assessing the myofiber maturation during muscle regeneration. By carefully comparing expression patterns of several muscle regeneration-related genes, we found that expression of Myozenin (Myoz1 and Myoz3), Troponin I (Tnni2), and Dystrophin (Dmd) is gradually increased as muscle regeneration proceeds. In contrast, commonly used regeneration markers such as Myh3 and Myh8 are transiently upregulated after muscle injury but their expression decreases as regeneration progresses. Intriguingly, upregulation of Myoz1, Myoz3 and Tnni2 cannot be achieved in cultured myotubes, indicating that these markers are excellent indicators to assess myofiber maturity. We also show that analyzing re-expression of Myoz1 and dystrophin in individual fiber during regeneration enables accurate assessment of myofiber maturity at the single-myofiber level. Together, our study provides valuable methods that are useful in evaluating muscle regeneration and the efficacy of therapeutic strategies for muscle diseases.

...